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QUADRATIC RESIDUE COVERS 
FOR CERTAIN REAL QUADRATIC FIELDS 

R. A. MOLLIN AND H. C. WILLIAMS 

ABSTRACT. Let An(a, b) = (ban+(a- l)/b)2+4an with n > 1 and b I a- l . If 
F is a finite set of primes such that for each n > 1 there exists some q E F 
for which the Legendre symbol (An (a, b)/q) # -1, we call F a quadratic 
residue cover (QRC) for the quadratic fields Kn(a, b) = Q(An(a, b)) . It is 
shown how the existence of a QRC for any a, b can be used to determine lower 
bounds on the class number of Kn(a, b) when An(a, b) is the discriminant 
of Kn(a, b) . Also, QRCs are computed for all 1 < a, b < 10000 . 

1. INTRODUCTION 

In [1 1] Shanks introduced the interesting sequence S, = (2n + 3)2 - 8 = 
(2n +1)2 + 2n+2. Shanks discovered this sequence by tabulating the class number 
h of the quadratic fields Q(V'/i), where dk = k2 - 8 < 104, k > 1, and dk 

is prime. He noticed that the only value of dk in his table such that h : 1 is 
dk = 4481. On further analysis he deduced that the class number hn of the 
quadratic fields Q(V"/3) (4481 = S6) for prime values of Sn tend to be large 
as n increases. For example, if n = 1, 2, 3, 4, 5, the class number of Q(v/I%) 
is 1, but Shanks was unable to find another value of n for which this is true; 
in fact, h8 = 3, h1o = 9, hII = 11, h12 = 27. Also, since S7, Sg are odd, 
composite and squarefree, their corresponding class numbers must be divisible 
by 2 (see Theorem 3.1 below). 

Recently, Mollin and Williams [8] were able to prove that hn = 1 for square- 
free Sn only for n = 1, 2, 3, 4, 5. The proof was elementary and depended 
upon the easily established fact that the Legendre symbol (Sn/127) = 1 for 
all n > 0. We point out here that the proof could also be made to work if 
we had used any finite set of primes F such that for any n > 0, we have 
(Sn/q) = 1 for some q E W. We used F = {127}, but it is easy to show that 
if F = {5, 7, 13, 17, 241}, then for any n >0 we get (Sn/q) = 1 for some 
q E F. This is because (Sn/5) = 1 when n _ 2 (mod 4); (Sn/7) = 1 when 
n 0 (mod 3); (Sn/13) = 1 when n _ 1, 11 (mod 12); (Sn/17) = 1 when 
n 0, 1, 4, 7 (mod 8); and (Sn/241) = 1 when n _ 5, 19 (mod 24). Notice 
that the integers are completely covered by the various congruences modulo 4, 
3, 12, 8, 24; that is, for any integer n, one of these congruences must hold. 
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If, for some function f such that f: Z'? Z '?, we have a finite set of 
primes ' such that for any n E Z'? we get 

(f(n)/q) :$ -1 

for some q e & , we call F a quadratic residue cover (QRC) for f. If 
Kn = Q( f(n)) and F is a QRC for f, we will say that F is a QRC for 
the fields Kn (n = 0, 1, 2, ...). Thus, we have seen that either {127} or 
{5, 7, 13, 17, 241} is a QRC for the fields Q(v/'%) (n = 0, 1, 2, ... ). The 
purpose of this paper is to generalize Shanks's sequence and show how a com- 
puter can be enlisted to search for quadratic residue covers for such sequences. 
It will also be shown that in certain cases these covers can be used to establish 
a lower bound on the growth of the class number of the real quadratic fields 
corresponding to these sequences. In order to do this, we must first provide a 
review of some of the properties of real quadratic fields. 

2. REAL QUADRATIC FIELDS 

The results given here concerning real quadratic fields are well known. They 
can be found, for example, in Williams and Wunderlich [13] and Cohn [1]. Let 
d be a squarefree positive integer and co = (a - 1 + xd-)/ a, where 

{1 when d 2, 3 (mod 4), 
2 when d --1 (mod 4). 

The discriminant A of K = Q(Vd-) is given by A = (2/a )2d, and if [a, /B] 
denotes the module {ax + fly I x, y E Z}, then the maximal order OK of K is 
given by OK = [1, c] . If a e K, we use d to denote the conjugate of a, and 
N(a) to denote the value of ad, the norm of a. 

An ideal of OK can be written as a = [a, b + c], where a, b, c E Z 
with a, c > 0, c I b, c I a, and ac I N(b + cc). Furthermore, if a, b, c E Z 
with c I b, c I a, and ac I N(b + c), then [a, b + c] is an ideal of OK. For 
an ideal a = [a, b + cc] with a, c > 0, the norm of a, N(a), is given by 
N(a) = ac > 0. If c = 1, then a is said to be a primitive ideal. 

A primitive ideal a is said to be reduced if it does not contain any nonzero 
element a such that lal < N(a) and IaI < N(a). 

Theorem 2.1. If a is a reduced ideal of OK, then N(a) < VA. If a is a primitive 
ideal of OK such that N(a) < vA/2, then a is a reduced ideal of OK. ? 

At this point it is convenient to introduce continued fractions into our dis- 
cussion. Let a E K; we can write a =(Po +vd)/Qo, where Po, Qo e Z . If we 
put qo = Laj and define 

Pi+ = qiQi - Pi, QQi+l =d - P71+ 

qi+ I Pi+ I + vrd (i= 0,1,~2,.) 
Q i+i+/d 

then 
a = (qO, ql, q2, .., qi, .. 

is the continued fraction expansion of a. One of the important uses for con- 
tinued fractions in the theory of real quadratic fields is illustrated in 
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Theorem 2.2. Let a1 = a = [a, b + c] be a reduced ideal of OK. If we put 
a = (b + w)/a, then all of the reduced ideals in the same equivalence class as a, 
and only these, are given by 

am = [Qm-l la S (Pm-l + v/--)/a7 (i = 1 2, 3, . .. ) 
where the values of the Pi 's and Qi 's are found by expanding a into a continued 
fraction. El 

Since by Theorem 2.1 there can only be a finite number of reduced ideals 
Of QK, and since all the am are reduced, we see that the sequence of reduced 
ideals a1, a2, a3, ... , am, ... produced by the continued fraction expansion 
must be purely periodic; that is, there must exist a minimal k e Z>0 such that 
ak+I = a1 . We call k the period length of the continued fraction expansion of 
a. In the case of the principal ideal class, we can put a1 = OK = [1, co] and 
use ic to denote this period length. If eo is the fundamental unit of K and R 
(= logeo) is the regulator of K, then by a result of Pen and Skubenko [9], we 
have R > klogq$, where q$ = (1 + v3/2. Thus, if h is the class number of 
K, we see that if C is the total number of reduced ideals in K, then 

(2.1) C < Rh/logq$. 

We should also mention that if p is any odd rational prime, we have 

(p) = p2 when p I A, 
(P) = P1P2 when (A/p) = 1, 

(p) = p when (A/p) = -1, 

where (p) is the ideal [p, pco] and p, PI, P2 denote prime ideals such that 

N(pl) = N(p2) = p and N(p) = p2. If p = 2, then 

(2) = p2 when 2 1 A, 
(2) = P1P2 when A =- 1 (mod 8), 
(2) = p when A =- 5 (mod 8). 

The following theorem is also useful. 

Theorem 2.3. The class number of Q(v'-i) is odd if and only if d = 2, p, 2pi, 
P1P2, where P, Pi ,P2 denote primes and Pi -P2 -1 (mod 4). . 

3. QUADRATIC RESIDUE COVERS 

In the case of d = 4481 , Shanks noticed that all of the reduced ideals (Shanks 
used the language of quadratic forms rather than that of ideals) in the principal 
ideal class have norms which are powers of 2 only. It was this property of 4481 
that he used to produce his sequence S,. More recently, Mollin [6] has shown 
that when i > 3, all the reduced principal ideals of OK have norms which are 
powers of a single integer a (> 1) if and only if 

A = (ban + (a - 1)/b)2 + 4a, 

where b I a - 1 and n > 0. In this case, c = 2n + 1 , and the continued fraction 
expansion of CO is given by 

P21 = a(ba' - (a- 1)/b)/2, Q2j = caa, q2j = ban- (1> 1) 
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and 

P2j+j = a(bal + (a - 1)/b)/2, Q2j+1 = uaa-j, q2j+l = ba (1 > 0). 

Also from Halter-Koch [2], the value of eO is given by 

(3.1) eo = af3, 

where 
a = (a(ban + (a - 1)/b) + 2v)/(2c) 

,B = (a(ban + a + 1) + 2bvKA)/(2aa). 

In the case of these values for A , suppose that p < V/X/2 is a prime such that 
p # a and (A/p) = 0, 1 . If p is a prime ideal divisor of (p), we get N(p) = p . 
It follows that since p is a primitive ideal, p must be reduced by Theorem 2.1. 
If h = 1, then p must be principal; but, since all the reduced principal ideals 
must have norms which are powers of a, this is impossible. For A = Sn, we 
see that if 127 < /A_/2, then hn > 1. Since Sn > (2. 127)2 = 64516 for 
n > 8, S7 is composite, and h6 = 3, we get hn > 1 for all squarefree Sn with 
n > 6. Notice that we could also use our other F here because we know that 
there always exists some prime p < 241 such that (Sn/p) = 1; hence, hn > 1 
whenever v'I-/2 > 241, which occurs when n > 9. This illustrates how QRCs 
can be used to establish this kind of class number result. 

Let 
An(a, b) = (ban + (a - l)1b )2 + 4an 

and let f(a, b) denote a QRC for the fields Kn(a, b) = Q( A-(a,b)). If 
An(a, b) is composite, we have the following simple result. 

Theorem 3.1. If An(a, b) = (ban + (a - 1)/b)2 + 4an is the discriminant of 
Kn(a, b), then 2 1 hn(a, b) whenever An(a, b) is composite. 
Proof. Suppose n is even. In this case, An (a, b) is a sum of two squares, and 
consequently, if p denotes any odd prime divisor of An(a, b), we get p 1 
(mod 4) . If n is odd and p I An(a, b), we see that (-4a/p) = (-a/p) = 1. 
We also note, however, that 

(3.2) b2An(a b) = (b2an + a + 1)2 - 4a; 

thus, if P I An(a, b), we get (4a/p) = (a/p) = 1. Since (-a/p) = 1 = (a/p), 
we must have (-1/p) = 1 and p _ 1 (mod 4). By Theorem 2.3 it is clear that 
2 1 hn (a, b) whenever An (a, b) is composite. 5 

Thus, the only possibility for hn(a, b) to be 1 occurs when A/n(a, b) is a 
prime. 

If we consider the case of a being composite, let q be any prime divisor of 
a such that q2 < a. It is clear in this case that {q} is a QRC for the fields 
Kn(a, b). We will use the notation f(a, b) = 5?, where 5 is some set, to 
denote that 5 is a QRC for Kn(a, b); no uniqueness is to be attributed, then, 
to the use of the symbol (a, b), as several different sets could qualify for a 
f(a, b). We have already seen in the case of Sn that F(2, 1) = {127} or 
{5, 7, 13, 17, 241}. Thus we see that f(a, b) = {q} if qIa and q2 < a. 
If a is a prime and a X (a, b), then because of the finiteness condition on 
f(a, b), there must exist some minimal 1 e Z>0 such that al = 1 (mod q) 
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for all q E F . We call such a QRC an l-QRC and denote it by (a, b). 
The following theorem shows why it is useful to try to find a F(a, b) with a 
minimal 1. 

We first point out, however, that all of our results concerning the class number 
of K,(a, b) are contingent upon the discriminant K,(a, b) being A,(a, b). 
To this end, we define h, (a, b) only when A, (a, b) is odd and squarefree, or 
A,(a, b) 0_ (mod 4) and A,(a, b)/4 is squarefree. 

Theorem 3.2. Let q be any prime such that (d/q) = 1 . If no power of q appears 
as the norm of a reduced principal ideal of Q(vrd), then h > log A/(2 log q) . 
Proof. Since (d/q) = 1 , there must exist some prime ideal q which divides (q) 
such that N(q) = q. Since qh is a primitive, principal ideal and N(qh) = qh 

we cannot have qh as a reduced principal ideal; hence, by Theorem 2.1 we have 
2qh > v/. E 

Corollary 3.2.1. If c6j(a, b) is an l-QRCfor thefields Kn(a, b), and no element 
of F(a, b) divides An(a, b) for any n > 1, then 

hn(a, b) > (n - 1)/1. 
Proof. Put h = hn(a, b) and let q E iV(a, b) . Since al > q and q{aAn(a, b), 
by the theorem we must have 

alh > qh > A(a,b)2 > ban/2 > an-1. 

Corollary 3.2.2. If a is composite, then 

hn(a, b) > 2n- 1. 
Proof. For WF(a, b) = {q} as above, we get 

2qh > A(ab) > an > q2n > 2q2n-1 

Hence hn(a, b) > 2n- 1. El 

Notice that in this case, since n > 1, we always have h > 1 when ic > 3. 
To illustrate further the importance of the existence of QRCs, we consider the 

case of r < 3. We need only look at those d-values such that d -5 (mod 8); 
for, otherwise, either A = 4d or A =1 (mod 8) and {2} is a QRC in either 
case. If i = 1, then it is easy to show that d = (2n + 1)2 + 4; if r = 2, then 
d = a2(2n + 1)2 + 4a, where a (> 1) is odd and squarefree. But, by Theorem 
4.3 of Louboutin, Mollin, and Williams [5], we see that for any prime value of 
a or a= 1,we can never have a QRC for Kn = Q( /a2(2n + 1)2 + 4a). 

Also, we have seen that in the case of Shanks's sequence Sn, we can very 
easily show that hn > 1 for n > 6 when Sn is squarefree. That is, we have a 
simple, parametric family of fields for which we know all the squarefree mem- 
bers with h = 1 . There are many cases of parametric families of fields for which 
this is very difficult to determine. Consider, for example, dn = (2n + 1)2 + 4. 
By using results of Kim, Leu, and Ono [3], we can only assert that we know 
all the values of n (0, 1, 2, 3, 6, 8) such that h = 1 for this family, with 
the possible exception of one other value. The existence of this other value n, 
however, would violate the Extended Riemann Hypothesis. Many other results 
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of this type can be found in Mollin and Williams [7], and this same kind of 
analysis can be used on our K,(a, b) fields. 

We make use of the analytic class number formula 

(3.3) 2hR= v2L(l, X), 

where 

L(l, X) = limL(s, X), L(s, X) = E n 

and (./n) is the Kronecker symbol. By Tatuzawa [12], we know that, if 0 < 

q < 2 and A > max{e 12, ellh}, then 

L(1, X) > .6551A-7 

with at most one exceptional value of A possible. In fact, Tatuzawa knew 
that the existence of this exceptional value of A would violate the Riemann 
Hypothesis on L(s, X). 

We can now prove 

Theorem 3.3. Let a, b befixed. If An(a, b) > B > 73131, then 

hn(a, b) > .24vK-/(logB)3 (n > 2) 

with at most one exceptional value of n possible. 
Proof. Put tj = 1/ log B . Since A,(a, b) > maxfe 112, el/l}, we get 

Lf 1, X) > .655q/A-"(a, b) 

with one possible exceptional value of An(a, b). Now by (3.3) we have 

(3.4) h > .655 An(a, b)IA/n(a, b)/(2R). 

Also, by (3.1) it is easy to see that the regulator R of K, (a, b) satisfies 

(3.5) R <(n +l)log A/2n(ag b)- 

Since 
An(a, b) > ban > an 

and a > 2, we get 

n < log /An(a, b)/ loga < logA,(a, b) - 1. 

Hence, by (3.4) and (3.5), 

hn(a, b) > (109 oA(a, b))2 > (log B) 2 

.655 vlB .24V'H 
e(log B)3 > (log B) 3 

The result of Theorem 3.3 is certainly better than that of Corollary 3.2.1, but 
it is a conditional result only and depends upon deep analytic results. Corollary 
3.2.1, on the other hand, is not conditional (given a certain (a, b)) and 
is elementary. As an example, we point out that for Sn we have a cover 
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C7(2, 1) = {127} and hn > (n - 1)/7. Thus, if n > 70001, we know that 
hn > 10000 unconditionally. By Theorem 3.3 we would get hn > 10000 for 
n > 32, with one possible exception. In ?5 we will show how to use the com- 
puter to narrow this gap between 70001 and 32. 

4. A SEARCH TECHNIQUE FOR QRCs AND NUMERICAL RESULTS 

We first point out that if we are attempting to find a (a, b) for Kn(a, b), 
we may assume that b2 < a - 1. This follows from 

Theorem 4.1. If F is an l-QRCfor thefields Kn(a, b), then it is also an l-QRL 
for the fields Kn(a, (a - 1)/b). 
Proof. Put A'n(a, b) = A(a, (a - 1)/b), so that 

a-2n,Af(a, b) = (ba-n + (a - 1)/b)2 + 4a-n. 

Putting m - -n (mod 1), m > 0, we get 

a-2n,Af(a, b) - Am(a, b) (mod q) 

for any q e F . Since (Am(a, b)/q') -1 for some q' E F , we get (A'/q')$ 
-1. 5 

While we are not able to provide a proof that for some 1 a (a, b) always 
exists for Kn (a, b), we can provide a simple heuristic reason for believing that 
this is the case. Let d(m) denote the number of divisors of m, and let Ak 
denote the set {0, 1, 2, 3, ... , k - 1}. It is a well-known result of Sylvester 
that if d'k is the set of distinct prime factors of ak - 1, then lekI > d(k) - 1. 
Also, if q e ek, the distinct values for An (a, b) modulo q can occur only for 
n e Alk. Now for any prime q e ek, it seems reasonable to assume that the 
probability that (An (a, b)/q) : -1 is about 2 . Thus, we would expect that if 
Vk = I'kI and 2vk is much larger than k (= lAkl), then &k is likely to be a 
possibility for F(a, b) with 1 = k. Notice that if k = 21K, where K iS an 
odd prime, we have d(k) = 2ju + 2. In this case, the ratio 

2vk/k > 22/+2-1/2/iK - 2/+l/K. 

Thus, if K = 3 (say), we would not expect to have a large value for ,u before 

we found a (a, b) with 1 = 3. 2's. In fact, in a preliminary computer run we 

found that for all prime values of a < 200, there exists a (a, b) for each b 

which divides a - 1 with 1 = 2' or 3 * 2' and ,u < 4. Also, for these covers 

the maximum value of IF(a, b)I is 6. 

Encouraged by the success of this preliminary run, we ran a second program 

which attempted to find covers (a, b) with smaller I values. For a given pair 

(a, b) and a value of k, the program first determined ek and AXk. For each 

prime q E ek the values of m such that (Am(a, b)/q) $ -1 were determined 

and deleted from those in AXk. When a q-value caused elements to be deleted 

from Ak, it was added to a set 'k , previously initialized to 0. If, at some 

point, Ak = 0, then Fk is a k-QRC for Kn(a, b). The program attempted 
to find k-QRCs for k = 1, 2i, 2'K, where K is an odd prime. For values of 
k of the form 2i or 21K, the program would initialize k to either 2 or K and 

then continue to double k until either a cover was found or IkY I > 8. This 

value of 8 was chosen in order to terminate what might otherwise be a long and 
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TABLE 4.1 

1 Number of Covers 

1 6582 
2 1988 
3 403 
5 226 
6 187 
7 56 

10 51 
11 12 
12 28 
13 3 
14 2 
17 2 
19 1 
20 2 
22 1 

total 9544 

likely fruitless attempt to find a cover with a small value of 1. Our previous 
experience indicated that if an l-QRC exists for K, (a, b) , then IF(a, b) I tends 
to be small. The smallest value of k of the forms mentioned above such that 
?k is a cover was recorded, and then the program tried to reduce the number of 
elements in Fk by testing every possible subset of it in order to find one with 
the minimal number of elements which was still a cover. This minimal cover 
was used for (a, b). 

The program was written in MAPLE and tested on A,(a, b) for all prime 
values of a such that 2 < a < 10,000 and all values of b such that b I a - 1, 
b > 1 , b2 < a- I . No attempt was made to eliminate values of A,(a, b) which 
have square factors. In under a week of run time in background on a SUN-4 
computer, a cover was found for K, (a, b) for every possible pair (a, b) under 
consideration. Curiously, the largest value of 1 which was found is 22 for 

F22(7, 1) = {23, 1123, 293459, 10746341}. 

In Table 4.1 we give the number of covers found for the various values of 1 
recorded by the program. 
The largest value of IF(a, b) I found in our run is 5 for 

F12(4253, 4) = {5, 7, 13, 31, 769}. 

The largest element in any of our covers is 

q = 89154834341167002940792447441 
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TABLE 4.2 

1 Number of Covers 

1 5628 
2 2032 
3 692 
5 459 
6 332 
7 136 

10 139 
11 29 
12 73 
13 6 
14 6 
17 3 
19 1 
20 5 
22 2 
28 1 

total 9544 

in F11(1873, 1) = {67, 89, q}. One of the more interesting covers is that for 
1 = 19; this is 

F19(43, 6) = {229, 4219, 46399, 2137444528747943}. 

The remarkable feature of this run is that a cover was always found, and found 
for a relatively small value of 1. Furthermore, there was no tendency for the 
value of 1 to increase with increasing values of a (as one would tend to expect 
by our heuristic). Indeed, some of the covers with large i-value such as 

F20(5, 1), W22(7, 1), F13(17, 2), W17(43, 3), F19(43, 6) 
occurred when a is relatively small. 

In view of Corollary 3.2.1 it is also of some interest to investigate the pos- 
sible existence of strict QRCs or SQRCs. These are quadratic residue covers 
f(a, b) such that for any n > 0 there must exist some p E f(a, b) for which 
(An(a, b)/p) = 1. The argument used above also suggests that an l-SQRC 
should always exist for any Kn(a, b). We modified our program to search for 
l-SQRCs for Kn(a, b) for a, b in the same range as before. In under two 
weeks of background run time we found an l-SQRC for every possible pair 
(a, b) in our range. Once again the i-values did not get very large, the largest 
being 28 for W28(3, 1). We summarize these results in Table 4.2. The largest 
value for IF(a, b)l in this run is once again 5, but it occurred for 5 different 
covers. Also, as observed earlier, there was no tendency for 1 to increase with 
increasing values of a. 

Given these phenomena and our heuristic, it does not seem unreasonable to 
make the following 
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Conjecture. For any prime value of a and any b such that b a - 1 and b > 1, 
there always exists for some 1 an l-QRC for Kn(a, b). 

We have already found all of the squarefree elements of Shanks's sequence 
Sn for which hn = 1. We can now go somewhat further, as we can bound 
from below the value of hn(a, b) . In fact, we can easily establish the following 
result. 

Theorem 4.2. If d is a positive squarefree integer such that all the reduced prin- 
cipal ideals in Q(V'd) have norms which are powers of an odd prime p > 2, 
7r > 3, and h = 1, then 

d E {37, 61, 157, 397, 7213} when p = 3, 
dE{101,461,941} whenp=5, 
d Ez{197, 317, 557, 1877} when p = 7, 
d Ez{773} when p = 11. 

Proof. By using the 1-values determined by our program and the bound of 
Corollary 3.2.1, we can easily establish an upper bound on d for h to be 1. 
Most of the d-values below this bound can be easily eliminated by finding a 
small prime q such that q 7? p, q < V/d/2, and (d/q) = 0, 1. The few 
remaining numbers can be tested by evaluating h for Q(Qyd) . 

5. A REFINEMENT 

As pointed out in ?3, the result of Corollary 3.2.1 gives us an unconditional 
lower bound on hn(a, b), but the bound is not a very good one. In this section 
we will discuss a method by which this bound can be improved. Our technique 
is elementary, unconditional, and can easily be implemented on a computer. 

Suppose that we have a set of primes P = {Pi, P2, .., Pk} such that if 
Pi E P, then pi < VA/2 and (A/pi) = 1. Consider the set N made up of 
integers n < V'_/2 such that each distinct prime divisor of n is in P. We can 
prove 

Theorem 5.1. If d is a positive squarefree integer, K = Q(/d-), h is the class 
number, and R is the regulator of K, then 

Rh 1 k 
~log(VA-/2) log_ > INI > k-! 1ogp1 

Proof. By (2. 1) we know that Rh/ log 0 > C, where C is the total number of 
reduced ideals in K. If Pi E P, then (Pi) = PliP2i . Let Pi be either of these. 
If 

k 

r =P b', 
i=l 

then r isreducedif N(r)<v'A/2. Thisoccurswhen Ek= bilogpi<log(v'4/2). 
If B,WI,W2,W3, ..., WkER+?, W = (W1, W2, ..., Wk) and 

4-(B) = {x I xE (Z>o)k X *.W <B}, 
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then by a result of Lehmer [4] (see also Rosser [10]) we have 

(5.1) [9Rj(B)j > (Bk + kWkB/2kl )/(k!Vk), 

where k = EW Wi5 Vk = Hik wi. If B = log(VA/2) and wi = logpi (i = 

1 Z1~~~=1 'i=i V 1, 2, ... , k), then C > INI = 19k(B)l > Bk/(k!Vk), and our result follows. 0 

We can improve Theorem 5.1 by considering 
k 

r=J|PiePifi, 
i=l 

where eifi = 0 and ei, fi > 0 (i= 1, 2, 3, ...,k). If 
k 

N(r) = fJpei+fi < v'/2, 
i=1 

then r is a reduced ideal of 0k. Thus, there are at least as many distinct 
reduced ideals as there are sets of pairs (ei, f1) (i = 1, 2, ..., k) such that 

( 1 ) Ek= 1 (ei + fi ) logpi < log(V 4/2) , 
(2) eif = 0, 
(3) ei + f > 0. 

Define the set 
Ak(B) = {IXe (Z?lk, x w < B}. 

If Xe5'k(B), then 

--e (B -Wk (1(1, 1, 1,., 1)). 

Hence, 
1-9k'(B) I > I gk(B -Wk)- 

Let x = (el + fi, e2 +f2, ..., ek + fk), where ei and fi (i= 1, 2, ...,k) 
satisfy (1) and (2) above and ei + f > 1 . If B = log(VJA/2), then x E (B). 
Thus, the total number of sets of pairs (e1, f1) (i = 1, 2, ... , k) satisfying 
(1), (2) and ei + Ji > 1 is given by 2klIk(B)I . If we were to allow the jth 
component of x to be such that ej + fj = 0, then the number of sets of 
pairs (ei, fi) (i = 1, 2, ..., k) satisfying (1), (2) and ei + fi > 1 (i # j) 

ej = j = 0, is given by 

2k[1 g- (B - (Wk-wj)) 

It follows that the total number of sets of pairs (e1, fi) (i = 1, 2, ..., k) 
satisfying (1), (2), and (3) must exceed 

k 

2kI9k4(B - Wk)t + 2k1 ZE L19r(B - (Wk-wj)) 
j=1 

2k 
> k!Vk(B Wk) I (B + (kl-1) Wk) 

by (5.1). 
We have shown, then, that 

C > k!V (B-Wk)k (B+(kl-)Wk). 

Thus, by using (2.1), we can prove 
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Theorem 5.2. Let d be a squarefree positive integer, K = Q(s./T), h be the 
class number of K, and R be the regulator of K. If PI , P2, .. ., Pk are distinct 
primes such that the Kronecker symbol (A/pi) = 1 (i = 1, 2, ... , k), then 

2k log q$ W h > k!VkR (B- Wk)k (B + (k- 1)Wk), 

where 
k k 

B = log(V4/2), Vk =flogPi, Wk = logPi- z 

We will now apply this result to our fields Kn(a, b) . By (3.2) we get 

) ~~< (b2an + a + 1)/b < a+; 

thus, from (3.5) we find that 

(5.2) R < (n + 1)2 loga. 

Also, 
log(VA/2) > n log a + log b - log 2 > (n - 1) log a. 

Hence, by Theorem 5.2 we have 

hn(a b)>k!Vk(n+ 1)2 log ((n-)loga- k)k-((n-)loga+(k-)Wk). 

Since, for a > x > y > 0, we get 

(a - y)n(a + ny) > (a - x)n(a + nx) , 
we see that if we have values A, B such that Wk < A, Vk < B, then 

(5.3) hn(a, b) > k!B(n + 1)2loga ((n -1) loga-A) ((n-1) loga+ (k- 1)A). 

We now illustrate how (5.3) can be used to improve a bound given by The- 
orem 3.1. As we mentioned in ?3, hn = hn(2, 1) > 10000 for n > 70001. 
By a simple computer search it is easy to establish that for each n such that 
0 < n < 70000, there exist 6 distinct primes < 163 such that (Sn/p) = 1 for 
any of these 6 primes p . Since we know that (Sn/2) = (Sn/127) = 1, we may 
assume that k = 6, 

A = log(2 *127 149 151 . 157. 163), 

B = log 2 log 127 log 149 log 151 log 157 log 163. 

Thus, by (5.3), we find that hn > 10000 for n > 257. Now for each n such 
that 0 < n < 256, there exist 8 distinct primes < 131 such that (Sn/p) = 1 
for any of these 8 primes; thus, we can put k = 8, 

A =log(2 101. 103 .107 .109 113 127 131), 

B = log 2 logI 01 log 103 log 107 log 109 log 113 log 127 log 131, 

and we get from (5.3) hn > 10000 for n > 145, a considerable improvement 
over the 70001 bound given in ?3. 
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